Hits 1 - 10 (out of 105 matching entities) [175 mentions] (18 ms):
1. |SUB|T|315|I

133 articles, score 43.283

Abstracts

  • Although imatinib is effective in chronic myeloid leukemia treatment, imatinib resistance due to the T315I mutation and/or other mutations is a challenge to be overcome. However, how DNA mutation occurs, particularly the T315I mutation, remains unclear. In the current study, the mutagenesis of BCR‑ABL was analyzed via focusing on the process of drug resistance, rather than the final results. Clone sequencing of the BCR‑ABL gene and other control genes was applied in two imatinib‑resistant cell models. The results have indicated that imatinib actively and selectively causes sporadic mutations in the BCR‑ABL gene, however not in the control genes. The majority of the mutations of BCR‑ABL were not the clinically observed T315I mutation, suggesting that the T315I mutation may be due to clonal expansion of cells with survival advantages. Taken together, the results of the current study elucidated the mutagenesis process during drug resistance and thus aids in the management of chemotherapy.
    Semi‑random mutagenesis profile of BCR‑ABL during imatinib resistance acquirement in K562 cells.
    Molecular medicine reports, Dec 2017 [PubMed 29152650]
  • Chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL) are hematopoietic malignancies caused by the constitutive activation of BCR-ABL tyrosine kinase. Although direct BCR-ABL inhibitors, such as imatinib, were initially successful in the treatment of leukemia, many patients developed drug resistance over time due to the gatekeeper mutation of BCR-ABL T315I. In the present study, we found that taxodione, a quinone methide diterpene isolated from Taxodium distichum, significantly induced apoptosis in human myelogenous leukemia-derived K562 cells, which were transformed by BCR-ABL. Taxodione reduced the activities of mitochondrial respiratory chain (MRC) complexes III and V, which appeared to induce the production of reactive oxygen species (ROS). N-acetylcysteine (NAC), an antioxidant agent, canceled taxodione-induced ROS production, reductions in MRC activities, particularly complex V, and apoptotic cell death. Furthermore, in K562 cells treated with taxodione, BCR-ABL and its major signaling molecules, such as STAT5 and Akt were sequestered in mitochondrial fraction, and their localization changes decrease their abilities to stimulate cell proliferation, suggesting that these actions seem to be a mechanism how taxodione functions as an anti-tumor drug. Strikingly, NAC canceled these taxodione-caused anti-cancer effects. Taxodione induced apoptosis in transformed Ba/F3 cells induced not only by BCR-ABL, but also T315I-mutated BCR-ABL through the generation of ROS. Collectively, the present results suggest that in the treatment of leukemia, taxodione has potential as a compound with high efficacy to overcome BCR-ABL T315I mutation-mediated resistance in leukemia cells.
    Taxodione induces apoptosis in BCR-ABL-positive cells through ROS generation.
    Biochemical pharmacology, Aug 2018 [PubMed 29859988]
  • Due to its inhibition of the Abl kinase domain in the BCR-ABL fusion protein, imatinib is strikingly effective in the initial stage of chronic myeloid leukemia with more than 90% of the patients showing complete remission. However, as in the case of most targeted anti-cancer therapies, the emergence of drug resistance is a serious concern. Several drug-resistant mutations affecting the catalytic domain of Abl and other tyrosine kinases are now known. But, despite their importance and the adverse effect that they have on the prognosis of the cancer patients harboring them, the molecular mechanism of these mutations is still debated. Here by using long molecular dynamics simulations and large-scale free energy calculations complemented by in vitro mutagenesis and microcalorimetry experiments, we model the effect of several widespread drug-resistant mutations of Abl. By comparing the conformational free energy landscape of the mutants with those of the wild-type tyrosine kinases we clarify their mode of action. It involves significant and complex changes in the inactive-to-active dynamics and entropy/enthalpy balance of two functional elements: the activation-loop and the conserved DFG motif. What is more the T315I gatekeeper mutant has a significant impact on the binding mechanism itself and on the binding kinetics.
    Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics.
    PLoS computational biology, Nov 2015 [PubMed 26606374]

2. |SUB|E|255|K

28 articles, score 6.601

Abstracts

  • Clinical resistance to imatinib (IM) in chronic myeloid leukemia (CML) carries adverse consequences. We investigated 22 CML patients who developed IM-resistance for BCR-ABL kinase domain (KD) mutations. The median follow-up for this study was 101.9 months (range: 22.2 to 176.5 months) and the estimated mean overall survival was 150.87 months (95% CI: 130.0 to 171.0). Five out of 22 patients tested positive for BCR-ABL KD mutations: 2 had T315I, 2 had E255K and 1 had V289F mutations. Of the remaining 17 patients who did not harbor BCR-ABL KD mutations, 11 patients received nilotinib while the rest continued on IM. All 17 achieved haematological remission but only 5 patients achieved complete cytogenetic remission, 4 of whom did so after switching to nilotinib. Our study shows that most of our IM-resistant patients do not test positive for BCR-ABL KD mutations by available testing methods and the role of second generation tyrosine kinase inhibitors remains undetermined. A critical analysis of the BCR-ABL KD mutations and the underlying mechanisms/ pathways of BCR-ABL independent IM-resistance along with potential treatments in the horizon will be discussed.
    Primary imatinib resistance in chronic myeloid leukemia patients in a developing country: BCR-ABL kinase domain mutations or BCR-ABL independent mechanisms?
    The Malaysian journal of pathology, Aug 2017 [PubMed 28866691]
  • Chronic myeloid leukemia (CML) with the e19a2 transcript coding for p230 is a rare disease. ABL1 kinase domain mutations in CML with the e19a2 rearrangement were seldom reported. The clinical characteristics of a 45-year-old Chinese female CML patient with e19a2 BCR/ABL1 transcript were described. The mutation on the ABL gene exons was determined by sequencing the cDNA of the μ-BCR-ABL fusion product. This patient developed an acquired resistance associated with two p-BCR/ABL1 mutations (E255K and G250E) during treatment with imatinib. Here, we report a CML patient with e19a2 transcripts, carrying E255K and G250E mutation and experience of nilotinib treatment. The μ-BCR/ABL1 mutation should be investigated after imatinib treatment failure.
    E255K and G250E mutation appearing in a patient with e19a2 chronic myeloid leukemia resistant to imatinib.
    Clinical laboratory, 2015 [PubMed 25807654]
  • Tyrosine kinase inhibitors (TKIs) are a mainstay of treatment for patients suffering from chronic myeloid leukemia (CML). Testing for various mutations in the BCR-ABL gene may help predict lack of response to specific TKIs where resistance has developed. To estimate the emergence of BCR-ABL kinase domain mutations associated with newly diagnosed CML patients exposed to first-line TKI treatment. Published studies were identified using a structured search of online databases. Original research studies were included if they reported the incidence of specific BCR-ABL kinase domain point mutations after first-line TKI treatment failure or baseline mutations for second-line TKI treatment following first-line treatment failure. Meta-analysis of mutation rates across studies was based on DerSimonian and Laird's random-effects model. Of 1,323 citations, 12 studies met the inclusion criteria, involving a total of 1,698 patients. Overall mutation rates (95% CI) were imatinib 9.7% (6.2%-13.3%); dasatanib 1.7% (0.0%-4.3%); and nilotinib 3.3% (0.0%-7.7%). The most common specific mutations were T315I, E255K, and M351T. T315I mutations constituted 58% (7 of 12) of dasatinib-related mutations and 13% (15 of 117) of imatinib-related mutations. Lack of response to TKIs associated with mutation in the BCR-ABL gene was significantly higher in imatinib-treated patients, and all mutations arose after treatment. T315I was a common treatment-emergent mutation. Further research is needed to assess the prognostic value of testing for mutations and the economic implications of treatment-emergent mutations.
    Emergence of BCR-ABL kinase domain mutations associated with newly diagnosed chronic myeloid leukemia: a meta-analysis of clinical trials of tyrosine kinase inhibitors.
    Journal of managed care & specialty pharmacy, Feb 2015 [PubMed 25615000]

3. |SUB|Y|253|H

16 articles, score 4.911

Abstracts

  • Imatinib revolutionized the treatment of chronic myeloid leukemia (CML) with the expression of the BCR-ABL1 tyrosine kinase, but imatinib resistance is an emerging problem. Imatinib can hinder the inhibitory effects of BCR-ABL1 on mitochondrial apoptotic pathway, so mitochondrial mutagenesis can be important for its action. To explore the mechanisms of imatinib resistance we created a mouse-derived CML model cells consisting of parental 32D cells (P) and cells transfected with the BCR-ABL1 gene (S cells) or its variants with the Y253H or T315I mutations (253 and 315 cells, respectively), conferring resistance to imatinib. A fraction of the S cells was cultured in increasing concentrations of imatinib, acquiring resistance to this drug (AR cells). The 253, 315 and AR cells, in contrast to S cells, displayed resistance to imatinib. We observed that the T315I cells displayed greater extent of H2O2-induced mtDNA damage than their imatinib-sensitive counterparts. No difference in the sensitivity to UV radiation was observed among all the cell lines. A decrease in the extent of H2O2-induced mtDNA damage was observed during a 120-min repair incubation in all cell lines, but it was significant only in imatinib-sensitive and T315I cells. No difference in the copy number of mtDNA and frequency of the 3,867-bp deletion was observed and genotoxic stress induced by H2O2 or UV did not change this relationship. In conclusion, some aspects of mtDNA mutagenesis, including sensitivity to oxidative stress and DNA repair can contribute to imatinib resistance in BCR-ABL1-expressing cells.
    Mitochondrial mutagenesis in BCR-ABL1-expressing cells sensitive and resistant to imatinib.
    Acta biochimica Polonica, 2016 [PubMed 26757169]
  • Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2 · s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.
    UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib.
    International journal of molecular sciences, Aug 2015 [PubMed 26251899]
  • Imatinib resistance is an emerging problem in the therapy of chronic myeloid leukemia (CML). Because imatinib induces apoptosis, which may be coupled with mitochondria and DNA damage is a prototype apoptosis-inducing factor, we hypothesized that imatinib-sensitive and -resistant CML cells might differentially express apoptosis-related mitochondrially encoded genes in response to genotoxic stress. We investigated the effect of doxorubicin (DOX), a DNA-damaging anticancer drug, on apoptosis and the expression of the mitochondrial NADH dehydrogenase 3 (MT-ND3) and cytochrome b (MT-CYB) in model CML cells showing imatinib resistance caused by Y253H mutation in the BCR-ABL1 gene (253) or culturing imatinib-sensitive (S) cells in increasing concentrations of imatinib (AR). The imatinib-resistant 253 cells displayed higher sensitivity to apoptosis induced by 1 μM DOX and this was confirmed by an increased activity of executioner caspases 3 and 7 in those cells. Native mitochondrial potential was lower in imatinib-resistant cells than in their sensitive counterparts and DOX lowered it. MT-CYB mRNA expression in 253 cells was lower than that in S cells and 0.1 μM DOX kept this relationship. In conclusion, imatinib resistance may be associated with altered mitochondrial response to genotoxic stress, which may be further exploited in CML therapy in patients with imatinib resistance.
    Doxorubicin Differentially Induces Apoptosis, Expression of Mitochondrial Apoptosis-Related Genes, and Mitochondrial Potential in BCR-ABL1-Expressing Cells Sensitive and Resistant to Imatinib.
    BioMed research international, 2015 [PubMed 26618175]

4. |SUB|M|351|T

18 articles, score 4.123

Abstracts

  • BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML) patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48), all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid leukemia along with imatinib, all of which vary in their effectiveness against mutated BCR-ABL forms, detection of pre-existing BCR-ABL mutations can help in selection of appropriate first-line drug therapy. Thus, mutation testing using CD34+ cells may facilitate improved, patient-tailored treatment.
    Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.
    PloS one, 2013 [PubMed 23409026]
  • Tyrosine kinase inhibitors (TKIs) are a mainstay of treatment for patients suffering from chronic myeloid leukemia (CML). Testing for various mutations in the BCR-ABL gene may help predict lack of response to specific TKIs where resistance has developed. To estimate the emergence of BCR-ABL kinase domain mutations associated with newly diagnosed CML patients exposed to first-line TKI treatment. Published studies were identified using a structured search of online databases. Original research studies were included if they reported the incidence of specific BCR-ABL kinase domain point mutations after first-line TKI treatment failure or baseline mutations for second-line TKI treatment following first-line treatment failure. Meta-analysis of mutation rates across studies was based on DerSimonian and Laird's random-effects model. Of 1,323 citations, 12 studies met the inclusion criteria, involving a total of 1,698 patients. Overall mutation rates (95% CI) were imatinib 9.7% (6.2%-13.3%); dasatanib 1.7% (0.0%-4.3%); and nilotinib 3.3% (0.0%-7.7%). The most common specific mutations were T315I, E255K, and M351T. T315I mutations constituted 58% (7 of 12) of dasatinib-related mutations and 13% (15 of 117) of imatinib-related mutations. Lack of response to TKIs associated with mutation in the BCR-ABL gene was significantly higher in imatinib-treated patients, and all mutations arose after treatment. T315I was a common treatment-emergent mutation. Further research is needed to assess the prognostic value of testing for mutations and the economic implications of treatment-emergent mutations.
    Emergence of BCR-ABL kinase domain mutations associated with newly diagnosed chronic myeloid leukemia: a meta-analysis of clinical trials of tyrosine kinase inhibitors.
    Journal of managed care & specialty pharmacy, Feb 2015 [PubMed 25615000]
  • Chronic myeloid leukemia (CML) is effectively treated with imatinib. However, reactivation of Bcr-Abl via kinase domain mutations that reduce sensitivity to imatinib can cause relapse. As combination therapy is frequently used to prevent emergence of resistance, the combination of imatinib with an inhibitor of imatinib-resistant Bcr-Abl mutants (e.g., Src/Abl inhibitors AP23848 and BMS-354825) was investigated. To test this approach, cellular proliferation and Bcr-Abl tyrosine phosphorylation assays were done on Ba/F3 cells expressing wild-type (WT) Bcr-Abl and four common imatinib-resistant mutants (Y253F, E255K, T315I, and M351T). Colony-forming assays with primary CML cells were also done. Both Src/Abl inhibitors retained full inhibitory capacity when coadministered with imatinib at concentrations above typical clinical levels. For cells expressing WT Bcr-Abl or the marginally imatinib-resistant mutant M351T, inclusion of imatinib at therapeutic levels enhanced the effects of the Src/Abl inhibitors. By comparison, for the highly imatinib-resistant mutants Y253F and E255K, inclusion of imatinib at clinical levels resulted in only a slight enhancement beyond the effects of the Src/Abl inhibitors. None of the inhibitors affected Bcr-Abl T315I cells. Colony-forming assays with primary CML cells yielded analogous results. Our results indicate that Src/Abl inhibitors are compatible with imatinib and suggest that combined Abl inhibitor therapy is a feasible treatment strategy for patients with CML.
    Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib.
    Clinical cancer research : an official journal of the American Association for Cancer Research, Oct 2005 [PubMed 16203792]

5. |SUB|K|562|R

6 articles, score 3.239

Abstracts

  • Imatinib (IM) is a first-line therapeutic drug for chronic myeloid leukemia (CML), a hematological disease. Mutations in the BCR-ABL domain increase formation of IM resistance in CML. However, not all patients are BCR-ABL domain-mutant dependent. Investigating non-mutant mechanisms in the development of acquired IM resistance is a critical issue. We explored the mechanisms which influence IM efficacy and resistance in CML. Higher protective autophagy was identified in IM-resistant K562 (K562R) cells. Inhibition of autophagy by the inhibitors, chloroquine and 3-methyladenine, enhanced IM's efficacy in K562R cells. In addition, microRNA (miR)-199a/b-5p were downregulated in K562R cells compared to parent cells. Overexpression of miR-199a/b-5p reduced autophagy and induced cell apoptosis, resulting in enhanced IM's efficacy in K562R cells. Moreover, expression levels of the Wingless-type MMTV integration site family member 2 (WNT2), a positive regulator of autophagy, were significantly higher in K562R cells, and it was validated as a direct target gene of miR-199a/b-5p. Overexpressions of miR-199a/b-5p inhibited WNT2 downstream signaling. Furthermore, overexpression and knockdown of WNT2 influenced autophagy formation and CML drug sensitivity to IM. Overexpression of WNT2 could also reverse miR-199a/b-5p-enhanced IM efficacy in K562R cells. These results emphasized that miR-199a/b-5p inhibited autophagy via repressing WNT2 signaling and might provide novel therapeutic strategies for future IM-resistant CML therapy and drug development.
    microRNA-199a/b-5p enhance imatinib efficacy via repressing WNT2 signaling-mediated protective autophagy in imatinib-resistant chronic myeloid leukemia cells.
    Chemico-biological interactions, Aug 2018 [PubMed 29890129]
  • Imatinib, a Bcr-Abl-specific inhibitor, is effective for treating chronic myeloid leukemia (CML), but drug resistance has emerged for this disease. In this study, we synthesized a novel tubulin polymerization inhibitor, MPT0B206 (N-[1-(4-methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-formamide), and demonstrated its apoptotic effect and mechanism in imatinib-sensitive K562 and imatinib-resistant K562R CML cells. Western blotting and immunofluorescence microscopy showed that MPT0B206 induced microtubule depolymerization in K562 and K562R cells. MPT0B206 inhibited the growth of these cells in a concentration- and time-dependent manner. It did not affect the viability of normal human umbilical vein endothelial cells. MPT0B206 induced G2/M cell cycle arrest and the appearance of the mitotic marker MPM-2 in K562 and K562R cells, which is associated with the upregulation of cyclin B1 and the dephosphorylation of Cdc2. Treatment of K562 and K562R cells with MPT0B206 induced apoptosis and reduced the protein levels of procaspase-9 and procaspase-3 and increased caspase-3 activity and PARP cleavage. MPT0B206 also reduced the levels of the antiapoptotic proteins Mcl-1 and Bcl-2 and increased the level of the apoptotic protein Bax. Additional experiments showed that MPT0B206 markedly downregulated Bcr-Abl mRNA expression and total and phosphorylated Bcr-Abl protein levels and inhibited the phosphorylation of its downstream proteins STAT5, MAPK, and AKT, and the protein level of c-Myc in K562 and K562R cells. Furthermore, MPT0B206 triggered viability reduction and apoptosis in CML cells carrying T315I-mutated Bcr-Abl. Together, these results suggest that MPT0B206 is a promising alternative for treating imatinib-resistant CML.
    A novel tubulin polymerization inhibitor, MPT0B206, downregulates Bcr-Abl expression and induces apoptosis in imatinib-sensitive and imatinib-resistant CML cells.
    Apoptosis : an international journal on programmed cell death, Sep 2016 [PubMed 27344662]
  • Resistance toward imatinib (IM) and other BCR/ABL tyrosine kinase inhibitors remains troublesome in the treatment of advanced stage chronic myeloid leukemia (CML). The aim of this study was to estimate the reversal effects of down-regulation of Na(+)/H(+) exchanger 1 (NHE1) on the chemoresistance of BCR-ABL-positive leukemia patients' cells and cell lines. After treatment with the specific NHE1 inhibitor cariporide to decrease intracellular pH (pHi), the heme oxygenase-1 (HO-1) levels of the K562R cell line and cells from IM-insensitive CML patients decreased. HO-1, as a Bcr/Abl-dependent survival molecule in CML cells, is important for the resistance to tyrosine kinase inhibitors in patients with newly diagnosed CML or IM-resistant CML. Silencing PKC-β and Nrf-2 or treatment with inhibitors of p38 pathways obviously blocked NHE1-induced HO-1 expression. Furthermore, treatment with HO-1 or p38 inhibitor plus IM increased the apoptosis of the K562R cell line and IM-insensitive CML patients' cells. Inhibiting HO-1 enhanced the activation of caspase-3 and poly(ADP-ribose) polymerase-1. Hence, the results support the anti-apoptotic role of HO-1 induced by NHE1 in the K562R cell line and IM-insensitive CML patients and provide a mechanism by which inducing HO-1 expression via the PKC-β/p38-MAPK pathway may promote tumor resistance to oxidative stress.
    Induction of heme oxygenase-1 by Na+-H+ exchanger 1 protein plays a crucial role in imatinib-resistant chronic myeloid leukemia cells.
    The Journal of biological chemistry, May 2015 [PubMed 25802333]

6. |SUB|G|250|E

11 articles, score 2.534

Abstracts

  • Chronic myeloid leukemia (CML) with the e19a2 transcript coding for p230 is a rare disease. ABL1 kinase domain mutations in CML with the e19a2 rearrangement were seldom reported. The clinical characteristics of a 45-year-old Chinese female CML patient with e19a2 BCR/ABL1 transcript were described. The mutation on the ABL gene exons was determined by sequencing the cDNA of the μ-BCR-ABL fusion product. This patient developed an acquired resistance associated with two p-BCR/ABL1 mutations (E255K and G250E) during treatment with imatinib. Here, we report a CML patient with e19a2 transcripts, carrying E255K and G250E mutation and experience of nilotinib treatment. The μ-BCR/ABL1 mutation should be investigated after imatinib treatment failure.
    E255K and G250E mutation appearing in a patient with e19a2 chronic myeloid leukemia resistant to imatinib.
    Clinical laboratory, 2015 [PubMed 25807654]
  • ABL kinase domain mutations have been implicated in the resistance to the BCR-ABL inhibitor imatinib mesylate of Philadelphia-positive (Ph+) leukemia patients. Using denaturing high-performance liquid chromatography and sequencing, we screened for ABL kinase domain mutations in 370 Ph+ patients with evidence of hematologic or cytogenetic resistance to imatinib. Mutations were found in 127 of 297 (43%) evaluable patients. Mutations were found in 27% of chronic-phase patients (14% treated with imatinib frontline; 31% treated with imatinib post-IFN failure), 52% of accelerated-phase patients, 75% of myeloid blast crisis patients, and 83% of lymphoid blast crisis/Ph+ acute lymphoblastic leukemia (ALL) patients. Mutations were associated in 30% of patients with primary resistance (44% hematologic and 28% cytogenetic) and in 57% of patients with acquired resistance (23% patients who lost cytogenetic response; 55% patients who lost hematologic response; and 87% patients who progressed to accelerated phase/blast crisis). P-loop and T315I mutations were particularly frequent in advanced-phase chronic myeloid leukemia and Ph+ ALL patients, and often accompanied progression from chronic phase to accelerated phase/blast crisis. We conclude that (a) amino acid substitutions at seven residues (M244V, G250E, Y253F/H, E255K/V, T315I, M351T, and F359V) account for 85% of all resistance-associated mutations; (b) the search for mutations is important both in case of imatinib failure and in case of loss of response at the hematologic or cytogenetic level; (c) advanced-phase chronic myeloid leukemia and Ph+ ALL patients have a higher likelihood of developing imatinib-resistant mutations; and (d) the presence of either P-loop or T315I mutations in imatinib-treated patients should warn the clinician to reconsider the therapeutic strategy.
    Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia.
    Clinical cancer research : an official journal of the American Association for Cancer Research, Dec 2006 [PubMed 17189410]
  • To analyze the association of different types of ABL tyrosine point mutations and imatinib resistance to probe the relation between ABL tyrosine point mutations and the prognosis of patients with chronic myeloid leukemia (CML). Nested reverse transcriptasepolym erase chain reaction was performed on samples from 70 patients to amplify the ABL kinase domain. Then, the amplified product was purified and sequenced in both direction. The homologous analysis was performed in combination of clinical data. The ABL domain point mutations were detected in 32 patients (45.7%) including 16 patients in chronic phase (CP), 6 patients in accelerated phase(AP)and 10 patients in blast phase (BP), which were detected as T315I, E255K, C475Y, Y253H, G321W, G250E, F317L, E258K, F359V, E459K and F311I, respectively. Sokal score with intermediate and high risk and Ph+ chromosome with complex karyotype were important risk factors for ABL domain point mutations. The 5-year overall survival (OS) was not significantly different between the patients with or without ABL domain point mutations (78.1% vs 84.2%, P=0.985), while the 5-year cumulative event-free survival (EFS) of two groups were 34.4% and 68.4% (P=0.034), respectively. The rate of complete cytogenetic response was higher in patients treated with allogenic hematopetic stem cell transplantation (allo-HSCT) compared with patients merely treated with second-generation tyrosine kinase inhibitors or chemotherapeutics (P=0.001). Patients with ABL domain point mutations had poor efficacy and prognosis compared to those without ABL domain point mutations. Detection of ABL domain point mutations in CML-CP was helpful for the adjustment of therapeutic options and improvement of prognosis. And allo-HSCT was a more effective therapy for patients with advanced phase.
    [Correlation between point mutation in ABL kinase and clinical outcome of chronic myeloid leukemia patients].
    Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi, Aug 2014 [PubMed 25152116]

7. |SUB|F|317|L

9 articles, score 1.966

Abstracts

  • The introduction of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) has significantly increased survival rate and quality of life for patients with CML. Despite the high efficacy of imatinib, not all patients benefit from this treatment. Resistance to imatinib can develop from a number of mechanisms. One of the main reasons for treatment failure is a mutation in the BCR-ABL gene, which leads to therapy resistance and clonal evolution. Clearly, new treatment approaches are required for patients who are resistant to imatinib. However, mutated clones are usually susceptible to second-generation TKIs, such as nilotinib and dasatinib. The choice of the therapy depends on the type of mutation. A large trial program showed that dasatinib is effective in patients previously exposed to imatinib. However, for a minority of patients who experience treatment failure with TKI or progress to advanced-phase disease, allogeneic stem cell transplantation (allo-SCT) remains the therapeutic option. In spite of the high curative potential of allo-SCT, its high relapse rate still requires a feasible strategy of posttransplant treatment and prophylaxis. We report a case of a CML patient with primary resistance to first-line TKI therapy. The patient developed an undifferentiated blast crisis. Before dasatinib therapy, the patient was found to have an F317L mutation. He was successfully treated with dasatinib followed by allo-SCT. In the posttransplant period, preemptive dasatinib treatment was used to prevent disease relapse.
    Efficacy of Dasatinib in a CML Patient in Blast Crisis with F317L Mutation: A Case Report and Literature Review.
    Biomarker insights, 2015 [PubMed 26673003]
  • To analyze the association of different types of ABL tyrosine point mutations and imatinib resistance to probe the relation between ABL tyrosine point mutations and the prognosis of patients with chronic myeloid leukemia (CML). Nested reverse transcriptasepolym erase chain reaction was performed on samples from 70 patients to amplify the ABL kinase domain. Then, the amplified product was purified and sequenced in both direction. The homologous analysis was performed in combination of clinical data. The ABL domain point mutations were detected in 32 patients (45.7%) including 16 patients in chronic phase (CP), 6 patients in accelerated phase(AP)and 10 patients in blast phase (BP), which were detected as T315I, E255K, C475Y, Y253H, G321W, G250E, F317L, E258K, F359V, E459K and F311I, respectively. Sokal score with intermediate and high risk and Ph+ chromosome with complex karyotype were important risk factors for ABL domain point mutations. The 5-year overall survival (OS) was not significantly different between the patients with or without ABL domain point mutations (78.1% vs 84.2%, P=0.985), while the 5-year cumulative event-free survival (EFS) of two groups were 34.4% and 68.4% (P=0.034), respectively. The rate of complete cytogenetic response was higher in patients treated with allogenic hematopetic stem cell transplantation (allo-HSCT) compared with patients merely treated with second-generation tyrosine kinase inhibitors or chemotherapeutics (P=0.001). Patients with ABL domain point mutations had poor efficacy and prognosis compared to those without ABL domain point mutations. Detection of ABL domain point mutations in CML-CP was helpful for the adjustment of therapeutic options and improvement of prognosis. And allo-HSCT was a more effective therapy for patients with advanced phase.
    [Correlation between point mutation in ABL kinase and clinical outcome of chronic myeloid leukemia patients].
    Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi, Aug 2014 [PubMed 25152116]
  • Point mutations were found in the adenosine triphosphate (ATP) binding region of BCR/ABL in 12 of 18 patients with chronic myeloid leukemia (CML) or Ph-positive acute lymphoblastic leukemia (Ph(+) ALL) and imatinib resistance (defined as loss of established hematologic response), but they were found in only 1 of 10 patients with CML with imatinib refractoriness (failure to achieve cytogenetic response). In 10 of 10 patients for whom samples were available, the mutation was not detected before the initiation of imatinib therapy. Three mutations (T315I, Y253H, and F317L present in 3, 1, and 1 patients, respectively) have a predicted role in abrogating imatinib binding to BCR/ABL, whereas 3 other mutations (E255K, G250E, and M351T, present in 4, 2, and 2 patients, respectively) do not. Thus we confirm a high frequency of mutations clustered within the ATP-binding region of BCR/ABL in resistant patients. Screening may allow intervention before relapse by identifying emerging mutations with defined impacts on imatinib binding. Certain mutations may respond to higher doses of imatinib, whereas other mutations may mandate switching to another therapeutic strategy.
    High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance.
    Blood, May 2002 [PubMed 11964322]

8. |SUB|Y|253|F

7 articles, score 1.909

Abstracts

  • BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML) patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48), all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid leukemia along with imatinib, all of which vary in their effectiveness against mutated BCR-ABL forms, detection of pre-existing BCR-ABL mutations can help in selection of appropriate first-line drug therapy. Thus, mutation testing using CD34+ cells may facilitate improved, patient-tailored treatment.
    Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.
    PloS one, 2013 [PubMed 23409026]
  • To find new kinase inhibitors that overcome the imatinib resistance in treatment of chronic myeloid leukemia (CML), we synthesized C817, a novel derivative of curcumin, and tested its activities against wild-type (WT) and imatinib-resistant mutant Abl kinases, as well as in imatinib-sensitive and resistant CML cells in vitro. 32D cells harboring WT or mutant Abl kinases (nucleotide binding P-loop mutants Q252H, Y253F, and imatinib contact residue mutant T315I), as well as K562/G01 cells (with whole Bcr-Abl gene amplication) were tested. Kinase activity was measured using Kinase-Glo Luminescent Kinase Assay Platform in recombinant WT and mutant (Q252H, Y253F, and T315I) Abl kinases. Cell proliferation and apoptosis were examined using MTT assay and flow cytometry, respectively. The phosphorylation levels of Bcr-Abl initiated signaling proteins were analyzed using Western blotting. Colony forming units (CFU) growth and long term culture-initiating cells (LTC-ICs) were used to test the effects of C817 on human leukemia progenitor/stem cells. C817 potently inhibited both WT and mutant (Q252H, Y253F, and T315I) Abl kinase activities in a non-ATP competitive manner with the values of IC₅₀ at low nanomole levels. In consistent with above results, C817 suppressed the growth of both imatinib-sensitive and resistant CML cells, including wild-type K562, K562/G01, 32D-T315I, 32D-Q252H, and 32D-Y253F cells with the values of IC₅₀ at low micromole levels. C817 (0.5 or 1 μmol/L) dose-dependently inhibited the phosphorylation of Bcr-Abl and downstream proteins STAT-5 and CrkL in imatinib-resistant K562/G01 cells. Furthermore, C817 significantly suppressed CFU growth and LTC-ICs, implicating that C817 could eradiate human leukemia progenitor/stem cells. C817 is a promising compound for treatment of CML patients with Bcr-Abl kinase domain mutations that confer imatinib resistance.
    Curcumin derivative C817 inhibits proliferation of imatinib-resistant chronic myeloid leukemia cells with wild-type or mutant Bcr-Abl in vitro.
    Acta pharmacologica Sinica, Mar 2014 [PubMed 24487968]
  • Chronic myeloid leukemia (CML) is effectively treated with imatinib. However, reactivation of Bcr-Abl via kinase domain mutations that reduce sensitivity to imatinib can cause relapse. As combination therapy is frequently used to prevent emergence of resistance, the combination of imatinib with an inhibitor of imatinib-resistant Bcr-Abl mutants (e.g., Src/Abl inhibitors AP23848 and BMS-354825) was investigated. To test this approach, cellular proliferation and Bcr-Abl tyrosine phosphorylation assays were done on Ba/F3 cells expressing wild-type (WT) Bcr-Abl and four common imatinib-resistant mutants (Y253F, E255K, T315I, and M351T). Colony-forming assays with primary CML cells were also done. Both Src/Abl inhibitors retained full inhibitory capacity when coadministered with imatinib at concentrations above typical clinical levels. For cells expressing WT Bcr-Abl or the marginally imatinib-resistant mutant M351T, inclusion of imatinib at therapeutic levels enhanced the effects of the Src/Abl inhibitors. By comparison, for the highly imatinib-resistant mutants Y253F and E255K, inclusion of imatinib at clinical levels resulted in only a slight enhancement beyond the effects of the Src/Abl inhibitors. None of the inhibitors affected Bcr-Abl T315I cells. Colony-forming assays with primary CML cells yielded analogous results. Our results indicate that Src/Abl inhibitors are compatible with imatinib and suggest that combined Abl inhibitor therapy is a feasible treatment strategy for patients with CML.
    Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib.
    Clinical cancer research : an official journal of the American Association for Cancer Research, Oct 2005 [PubMed 16203792]

9. |SUB|V|299|L

7 articles, score 1.649

Abstracts

  • To evaluate the efficiency of dasatinib as the second- or third-line tyrosine kinase inhibitor (TKI)in imatinib-resistant patients with chronic myeloid leukemia (CML)based on BCR-ABL mutation detection. 122 CML patients received dasatinib treatment, including 83 with imatinib-resistance and 39 with both imatinib- and nilotinib-resistance, 55 in the chronic-phase (CP), 21 in the accelerated- phase (AP)and 46 in the blast- phase (BP). Those harboring dasatinib highly- resistant mutations (T315I/A, F317L/V/C and V299L)were excluded based on BCR-ABL kinase domain mutation screening by Sanger sequencing at baseline. Hematologic, cytogenetic and molecular responses were evaluated regularly, and rates of progression-free-survival (PFS)and overall survival (OS)were analyzed. BCR- ABL mutation detection was performed once the patients failed on dasatinib. In the CP patients, the rates of complete hematological response (CHR), complete cytogenetic response (CCyR), major molecular response (MMR)and molecular response 4.5 (MR4.5)were 92.7%, 53.7%, 29.6% and 14.8%, respectively. 4-year PFS and OS rates were 84.4% and 89.5%, respectively. In the AP patients, HR and CCyR rates were 81.0% and 35.0%; and 3-year PFS and OS rates were 56.1% and 59.3%, respectively. In the BP patients, HR and CCyR rates were 63.0% and 21.4%; and 1-year PFS and OS rates were 43.6% and 61.8%, respectively. Outcomes were similar when dasatinib was used as the second- line TKI or the third-line TKI. Of the 75 patients who were resistant to dasatinib, 37 (48.7%)developed new mutation(s), and T315I (59.5%)was the most common mutation type. The patients who already harbored mutation(s)before dasatinib therapy achieved similar responses and outcomes to those with no mutation at baseline. However, they had higher likelihood of developing additional mutations associated with resistance to dasatinib (65.7%vs 34.1%,P=0.006). Dasatinib was proved to be effective in the treatment of imatinib- or/and nilotinib-resistant CML patients, especially in both CP and AP cohorts. The significance of BCR-ABL mutation screening and monitoring should be highlighted before and during dasatinib therapy.
    [Dasatinib treatment based on BCR- ABL mutation detection in imatinib- resistant patients with chronic myeloid leukemia].
    Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi, Jan 2016 [PubMed 26876246]
  • Bosutinib (SKI-606) is an orally available, once-daily, dual Src and Abl kinase inhibitor with promising clinical potential in first-, second-, and third-line treatment of chronic myeloid leukemia (CML). Bosutinib effectively inhibits wild-type BCR-ABL and most imatinib-resistant BCR-ABL mutations except for V299L and T315I. Low hematologic toxicity is a remarkable characteristic of this novel second-generation tyrosine kinase inhibitor, and this has been ascribed to its minimal activity against the platelet-derived growth factor receptor and KIT. Low-grade, typically self-limiting diarrhea, which usually appears within the first few weeks after treatment initiation, represents the predominant toxicity of bosutinib. Other treatment-associated adverse events are mostly mild to moderate. Bosutinib has been approved by the US Food and Drug Administration for the treatment of chronic, accelerated, or blast phase Philadelphia chromosome-positive CML in adult patients with resistance or intolerance to prior therapy. This review summarizes the main properties of bosutinib and the currently available data on its clinical potential in the treatment of CML.
    Profile of bosutinib and its clinical potential in the treatment of chronic myeloid leukemia.
    OncoTargets and therapy, 2013 [PubMed 23493838]
  • Bosutinib (SKI-606) is an orally available, once-daily dual Src and Abl kinase inhibitor, approved by the US Food and Drug Administration for the treatment of adults with chronic, accelerated, or blast-phase Philadelphia chromosome-positive chronic myelogenous leukemia who are intolerant of or resistant to first- or second-generation tyrosine kinase inhibitors. Bosutinib effectively overcomes the majority of imatinib-resistance-conferring BCR-ABL mutations except V299L and T315I. In the Bosutinib Efficacy and Safety in chronic myeloid LeukemiA (BELA) trial, bosutinib attained a faster and deeper molecular response than imatinib in newly diagnosed chronic-phase chronic myelogenous leukemia patients. Treatment-emergent adverse events are usually very manageable. Low grade, mostly self-limiting diarrhea represents the most frequently observed toxicity of bosutinib. Anti-diarrheal drugs, antiemetic agents, and/or fluid replacement should be used to treat these patients. The improved hematological toxicity of bosutinib compared with other tyrosine kinase inhibitors has been ascribed to its minimal activity against platelet-derived growth factor receptor and KIT. In this review, we give an overview on the profile of bosutinib, the clinical potential and treatment-emergent adverse events.
    Bosutinib in the management of chronic myelogenous leukemia.
    Biologics : targets & therapy, 2013 [PubMed 23674887]

10. |SUB|V|289|F

3 articles, score 1.521

Abstracts

  • Clinical resistance to imatinib (IM) in chronic myeloid leukemia (CML) carries adverse consequences. We investigated 22 CML patients who developed IM-resistance for BCR-ABL kinase domain (KD) mutations. The median follow-up for this study was 101.9 months (range: 22.2 to 176.5 months) and the estimated mean overall survival was 150.87 months (95% CI: 130.0 to 171.0). Five out of 22 patients tested positive for BCR-ABL KD mutations: 2 had T315I, 2 had E255K and 1 had V289F mutations. Of the remaining 17 patients who did not harbor BCR-ABL KD mutations, 11 patients received nilotinib while the rest continued on IM. All 17 achieved haematological remission but only 5 patients achieved complete cytogenetic remission, 4 of whom did so after switching to nilotinib. Our study shows that most of our IM-resistant patients do not test positive for BCR-ABL KD mutations by available testing methods and the role of second generation tyrosine kinase inhibitors remains undetermined. A critical analysis of the BCR-ABL KD mutations and the underlying mechanisms/ pathways of BCR-ABL independent IM-resistance along with potential treatments in the horizon will be discussed.
    Primary imatinib resistance in chronic myeloid leukemia patients in a developing country: BCR-ABL kinase domain mutations or BCR-ABL independent mechanisms?
    The Malaysian journal of pathology, Aug 2017 [PubMed 28866691]
  • Discovery of imatinib mesylate (IM) as the targeted BCR-ABL protein tyrosine kinase inhibitor (TKI) has resulted in its use as the frontline therapy for chronic myeloid leukemia (CML) across the world. Although high response rates are observed in CML patients who receive IM treatment, a significant number of patients develop resistance to IM. Resistance to IM in patients has been associated with a heterogeneous array of mechanisms of which point mutations within the ABL tyrosine kinase domain (TKD) are the frequently documented. The types and frequencies of mutations reported in different population studies have shown wide variability. We screened 125 Malaysian CML patients on IM therapy who showed either TKI refractory or resistance to IM to investigate the frequency and pattern of BCR-ABL kinase domain mutations among Malaysian CML patients undergoing IM therapy and to determine the clinical significance. Mutational screening using denaturing high performance liquid chromatography (dHPLC) followed by DNA sequencing was performed on 125 IM resistant Malaysian CML patients. Mutations were detected in 28 patients (22.4%). Fifteen different types of mutations (T315I, E255K, G250E, M351T, F359C, G251E, Y253H, V289F, E355G, N368S, L387M, H369R, A397P, E355A, D276G), including 2 novel mutations were identified, with T315I as the predominant type of mutation. The data generated from clinical and molecular parameters studied were correlated with the survival of CML patients. Patients with Y253H, M351T and E355G TKD mutations showed poorer prognosis compared to those without mutation. Interestingly, when the prognostic impact of the observed mutations was compared inter-individually, E355G and Y253H mutations were associated with more adverse prognosis and shorter survival (P=0.025 and 0.005 respectively) than T315I mutation. Results suggest that apart from those mutations occurring in the three crucial regions (catalytic domain, P-loop and activation-loop), other rare mutations also may have high impact in the development of resistance and adverse prognosis. Presence of mutations in different regions of BCR-ABL TKD leads to different levels of resistance and early detection of emerging mutant clones may help in decision making for alternative treatment. Serial monitoring of BCR-ABL1 transcripts in CML patients allows appropriate selection of CML patients for BCR-ABL1 KD mutation analysis associated with acquired TKI resistance. Identification of these KD mutations is essential in order to direct alternative treatments in such CML patients.
    BCR-ABL kinase domain mutations, including 2 novel mutations in imatinib resistant Malaysian chronic myeloid leukemia patients-Frequency and clinical outcome.
    Leukemia research, Apr 2014 [PubMed 24456693]
  • Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients is mediated by different mechanisms that can be classified as BCR-ABL dependent or BCR-ABL independent pathways. BCR-ABL dependent mechanisms are most frequently associated with point mutations in tyrosine kinase domain (TKD) of BCR-ABL1 and also with BCR-ABL gene amplification. Many different types and frequencies of mutations have been reported in different studies, probably due to the different composition of study cohorts. Since no reports are available from Malaysia, this study was undertaken to investigate the frequency and pattern of BCR-ABL kinase domain mutations using dHPLC followed by sequencing, and also status of BCR-ABL gene amplification using fluorescence in situ hybridization (FISH) on 40 IM resistant Malaysian CML patients. Mutations were detected in 13 patients (32.5%). Five different types of mutations (T315I, E255K, Y253H, M351T, V289F) were identified in these patients. In the remaining 27 IM resistant CML patients, we investigated the contribution made by BCR-ABL gene amplification, but none of these patients showed amplification. It is presumed that the mechanisms of resistance in these 27 patients might be due to BCR-ABL independent pathways. Different mutations confer different levels of resistance and, therefore, detection and characterization of TKD mutations is highly important in order to guide therapy in CML patients.
    Contribution of BCR-ABL kinase domain mutations to imatinib mesylate resistance in Philadelphia chromosome positive Malaysian chronic myeloid leukemia patients.
    Hematology reports, Nov 2012 [PubMed 23355941]


scroll to top